
Journal of Sound and Vibration (1998) 214(2), 325–338
Article No. sv981560

ANALYTICAL METHODS FOR SOLVING
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In this paper various approximate analytical methods for obtaining solutions for strongly
non-linear differential equations in a complex function are developed. The methods are
based on the solution of the generating differential equation with a cubic complex term.
The method of harmonic balance, the method of Krylov–Bogoliubov and the elliptic
perturbation method are adopted for solving strongly non-linear differential equations in
a complex function. Three examples are analyzed. They describe the vibrations of a rotor
with non-linearity.
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1. INTRODUCTION

The motion of a plane one-mass system with two degrees of freedom, is usually described
with a complex function z= x+iy where i=z1 is the imaginary unit and x and y are
time variable co-ordinates of the system [1]. The forces which act in such a system also
admit this simplified way of motion description. Rotors, which are the fundamental
working elements of many machines, are mechanical systems in which the vibrations occur
in one plane and are conveniently formulated by using the complex function z. The
dynamics of rotors is mainly described with differential equations with complex deflection
functions (see references [2–4]). One of the general forms of such a differential equation
of motion is

z̈+ c1 z+ c3 z3 = of(z, ż, cc), (1)

where c1 is the coefficient of the linear term, c3 is the coefficient of the non-linear
term, o is a small parameter, f is the non-linear function and cc are complex conjugate
functions. To find the solution of the equation some approximate analytical methods
have been developed. Usually the solution is obtained as a function of Jacobi elliptic
functions. The method of Bogoliubov–Mitropolski developed for systems with small
non-linearity has been extended for the systems with strong non-linearity [5, 6]. The
same case can be dealt with by the method of Krylov–Bogoliubov [7, 8]. Very often, the
linear term in equation (1) is very small or negligible. Then, the differential equation has
the form

z̈+ c3 z3 = of(z, ż, cc). (2)

The aim in this paper is to present an approximate solution for this special differential
equation.
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In recent years much attention has been paid to solving non-linear differential equations
which describe the motion of one-degree-of-freedom systems:

ẍ+ x3 = of(x, ẋ). (3)

The analytical solution has the form of Jacobian elliptic function [9]. As the most
convenient analytical asymptotic methods, the harmonic balance method and the method
of slowly variable amplitude and phase have been applied [10, 11]. Recently, a new elliptic
perturbation method has been developed for solving a special class of differential equations
which describe the limit cycle motion [12].

In this paper the analytical approximate methods of equation (2) based on the results
obtained by analyzing equations (1) and (2) are developed. The method of harmonic
balance, the method of slowly variable amplitude and phase and the elliptic perturbation
method are extended for solving the non-linear differential equation (2). At the end, several
examples are shown. The results obtained by the methods mentioned are compared with
numerical ones.

2. THE SOLUTION OF THE GENERATING EQUATION

Two types of generating equations of equation (1) are evident depending on the sign
of the coefficient of the non-linear term.

Consider the generating equation with a positive coefficient of the non-linear term,
c3 q 0:

z̈+ c1 z+ c3 z3 =0. (4)

The equivalent system of non-linear differential equations is then

ẍ+ c1 x+ c3 (x3 −3xy2)=0,

ÿ+ c1 y+ c3 (3x2y− y3)=0.

The solution of equation (4) is assumed in the complex form which satisfies also the
aforementioned system of non-linear differential equations:

z= x+iy=A[cn (Vt, k2)+ i sn (Vt, k2)]0A(cn+ i sn). (5)

Here cn and sn are Jacobian elliptic functions [13], A is the amplitude of vibrations, V is
the angular frequency, t is time and k is the modulus of the Jacobi elliptic function. The
first and the second time derivatives of equation (5) are

ż=AiV dn (cn+ i sn), (6)

z̈=−AV2(dn2 + ik2 sn cn) (cn+ i sn), (7)

where dn is a Jacobian elliptic function. Substituting the assumed solution (5) and its time
derivatives (6) into equation (7) and separating the real and imaginary parts yields

V2 = c1 + c3 A2, k2 =2c3 A2/(c1 + c3 A2). (8, 9)

It is evident that the frequency of vibrations V and the parameter of the Jacobian elliptic
function k2 depend on the amplitude of vibration A.

Another particular solution of equation (4) is

z=A(cn− i sn). (10)

Substituting equation (10) and the time derivatives

ż=−AiV dn (cn− i sn), (11)
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z̈=−AV2(dn2 − ik2 sn cn) (cn− i sn), (12)

into equation (4) yields the frequency and the parameter of the elliptic function in the same
forms (8) and (9) as for the previous solution.

For the case when the non-linearity has the opposite sign to the previous one (c3 Q 0)
the differential equation of motion is

z̈+ c1 z− c3 z3 =0. (13)

The solutions which satisfy equation (13) are

z=A[sn (Vt, k2)+ i cn (Vt, k2)]0A(sn+ i cn), (14)

and

z=A(sn− i cn), (15)

where the frequency V and the parameter k2 are described by equations (8) and (9),
respectively.

Consider the special case when c1 =0. The differential equation is

z̈+ c3 z3 =0. (16)

The solution has the form (5) where

V2 = c3 A2, k2 =2. (17, 18)

As the parameter kq 1, the Jacobian elliptic functions can be transformed to
corresponding functions with parameter kQ 1. Introducing the connections between the
functions (see references [9] and [10])

sn (Vt, 2)= (1/z2) sn (z2Vt, k2 =1/2),

cn (Vt, 2)=dn (z2Vt, 1/2), dn (Vt, 2)=cn (z2Vt, 1/2), (19)

yields the solution of equation (16) as

z=A[cn (Vt, 2)+ i sn (Vt, 2)]=A[dn (z2Vt, 1/2)+ i(1/z2) sn (z2Vt, 1/2)]. (20)

The corresponding time derivatives are

ż=AiV cn (dn+ i(1/z2) sn), (21)

z̈=−AV2(cn2 + iz2 sn dn) (dn+ i(1/z2) sn). (22)

and the frequency is

V=Azc3. (23)

By using the solution of the generating equations (16) the methods for obtaining
approximate solutions of (2) are developed.

3. HARMONIC BALANCE METHOD

For the method of harmonic balance one can assume the solution of equation (2) to
be of the form (20). One finds the first and the second time derivatives of equation (20)
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and substitutes them into equation (16). Then one can develop the Jacobian elliptic
functions in Fourier series [14]:

sn (z2Vt, 1
2)=

2pz2
K

s
a

m=0

qm+1/2

1− q2m+1 sin $(2m+1)
pz2Vt

2K %,

cn (z2Vt, 1
2)=

2pz2
K

s
a

m=0

qm+1/2

1+ q2m+1 cos $(2m+1)
pz2Vt

2K %,

dn (z2Vt, 1
2)=

p

2K
+

2p

K
s
a

m=0

qm+1

1+ q2m+1 cos $(m+1)
pz2Vt

K %. (24)

Here K0K(k=1/z2)=1·854075 is the complete elliptic integral of the first kind,
K'0K'(k=1/z2)=1·854075 is the associated complete elliptic integral of the first kind,
q=e−pK'/K =0·043214. Substituting equations (20) and (24) into equation (2) and
separating the terms without and with circular functions one obtains

F1 (A, V, o, a)+ iF2 (A, V, o, a)+ (terms with harmonic functions)=0, (25)

where a represents all other parameters of the system. From the equations

F1 =0, F2 =0, (26)

one obtains the solution A(a, o) and V(a, o). This solution describes the possible steady
state motion.

4. KRYLOV–BOGOLIUBOV METHOD

This method is also based on the solution of the generating equation (16). It is assumed
that the amplitude and phase are time dependent and the solution of equation (2) is

z(t)=A(t){dn [c(t), 1/2]+ i(1/(z2) sn [c(t), 1/2]}=A(t) (dn+ i(1/z2) sn), (27)

where

c(t)=z2 g
t

0

V(t) dt+f(t), V(t)=A(t)zc3. (28, 29)

Two constraints to solution (27) are introduced: (i) equation (27) must be a solution of
equation (2); (ii) the time derivative of equation (27) must have the same form as the time
derivative of the generating solution, i.e.,

ż(t)=A(t)iV(t) cn (dn+ i(1/z2) sn), (30)

when

A� (t)+A(t)if� (t) cn [c(t), 1/2]=0. (31)

Differentiating equation (27) twice in time yields

z̈=[A� (t)V(t)+A(t)V� (t)]i cn (dn+ i(1/z2) sn)

−A(t)V(t)i sn dn [z2V(t)+f� (t)] (dn+ i(1/z2) sn)

− (1/z2)A(t)V(t) cn2 [z2V(t)+f� (t)] (dn+ i(1/z2) sn). (32)
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Substituting equations (27) and (32) into equation (2), applying the relation (31) and
separating the real and imaginary parts yields

A2(t)f� (t)zc3 cn2 =−oz2( f1 dn+ (1/z2)f2 sn), (33)

2A� (t)A(t)zc3 cn= o( f2 dn− (1/z2)f1 sn). (34)

To find the solution in closed form of equations (33) and (34) is not an easy task. To
simplify the calculation the averaging procedure is introduced. The averaging is over the
Jacobian elliptic function period 4K. Then the averaged equations (33) and (34) are

A2(t)f� (t)=−
oz2

4(2E−K)zc3 g
4K

0 0 f1 dn+
1

z2
f2 sn1 dc, (35)

A(t)A� (t)=
o

8zc3 (2E−K) g
4K

0 0 f2 dn cn−
1

z2
f1 sn cn1 dc, (36)

where

�cn2[c(t), 1
2]�=g

4K

0

cn2[c(t), 1
2] dc=80E−

K
21=3·3889, (37)

and E0E(k2 =1/2)=1·350644 is the complete elliptic integral of the second kind.
The main disadvantage of the previous methods is that they give the solutions only in

the first approximation. The method suggested next gives a possibility to obtain the
solutions in a higher approximation.

5. THE ELLIPTIC PERTURBATION METHOD

Suppose that the amplitude of vibrations and the angular frequency of vibrations are
not the same in the x and y directions and the solution of equation (2) has the form

z=A dn (t1, 1/2)+A*i sn (t*1 , 1/2), (38)

where

dt1 /dt=V0 z2+ oV1 (t)+ o2V2 (t)+ · · · , (39)

dt*1 /dt=V0 z2+ oV*1 (t)+ o2V*2 (t)+ · · · , (40)

A=A0 + oA1 + o2A2 + · · · , A*= (A0 /z2)+ oA*1 + o2A*2 + · · · , t=V0 t.

(41–43)

The solution (38) can be rewritten in the form of series as

z= z0 + oz1 + o2z1 + · · · : (44)

i.e.,

x= x0 + ox1 + o2x2 + · · · , y= y0 + oy1 + o2y2 + · · · . (45, 46)

The solution (44) is periodic with period 4K. This means that x0 (0)= x0 (4K),
y0 (0)= y0 (4K), x1 (0)= x1 (4K), y1 (0)= y1 (4K), . . . , x'0 (0)= x'0 (4K), y'0 (0)= y'0 (4K),
x'1 (0)= x'1 (4K), y'1 (0)= y'1 (4K), . . . .

By substituting equation (44) and the corresponding time derivatives into equation (2)
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and separating the terms with the same order of the small parameter o, a system of
differential equations is obtained:

o0: 2V2
0x00 + c3 x0 (x2

0 −3y2
0)=0, (47)

2V2
0y00 − c3 y0 (y2

0 −3x2
0)=0; (48)

o1:

2V2
0x01 +2V0 V1 z2x00 +V0 V'1 x'0 + c3 (3x1 x2

0 −3x1 y2
0 +6x0 y0 y1)= f1, (49)

2V2
0y01 +2V0 V*1 z2y00 +V0 V*'1 y'0 − c3 (3y1 y2

0 −3y1 x2
0 +6y0 x0 x1)= f2 ; (50)

o2:

2V2
0x02 +2V0 V2 z2x00 +2V0 V1 z2x01 +V2

1x00 +V0 V'2 x'0 +V0 V'1 x'1

+ c3 [3x2 x2
0 +3x0 x2

1 −3(x0 y2
1 +2x0 y0 y2 +2x1 y0 y1 + x2 y2

0)]

=
1f1

Dx'
(V0 z2x'1 +V1 x'0 )+

1f1

1x
x1 +

1f1

1y'
(V0 z2y'1 +V1 y'0 )+

1f1

1y
y1, (51)

2V2
0y02 +2V0 V*2 z2y00 +2V0 V*1 z2y01 +V*2

1 y00 +V0 V*'2 y'0 +V0 V*'1 y'1

+ c3 [−3y0 (y0 y2 +3y2
1)+3(y0 x2

1 +2x0 x1 y1 +2x0 x2 y0 + y2 x2
0)]

=
1f2

Dx'
(V0 z2x'1 +V1 x'0 )+

1f2

1x
x1 +

1f2

1y'
(V0 z2y'1 +V1 y'0 )+

1f2

1y
y1. (52)

Here

f1 0 f1 (x0, y0, z2V0 x'0 , z2V0 y'0 ), f2 0 f2 (x0, y0, z2V0 x'0 , z2V0 y'0 ). (53, 54)

The solutions of equations (47) and (48) can be summarized as

z0 = x0 + iy0 =A0 [dn (t, 1/2)+ (i/z2) sn (t, 1/2)], (55)

where

V0 =A0 zc3.

One can now multiply equation (49) by x'0 and equation (50) by y'0 and integrate them,
to obtain

g
t

0

f1 x'0 dt=2V2
0x'1 x'0 =t0 +V0 V1 x'20 (1+z2) =t0 + c3 (x3

0x1 −3x0 x1 y2
0 −3x2

0y0 y1 =t0, (56)

g
t

0

f2 y'0 dt=2V2
0y'1 y'0 =t0 +V0 V*1 y'20 (1+z2) =t0 − c3 (y3

0y1 −3y0 y1 x2
0 −3y2

0x0 x1 =t0. (57)

Next one can integrate equations (56) and (57) over the period 4K. Due to the periodic
properties of the solution (44) one finds

g
4K

0

f1 x'0 dt=0, g
4K

0

f2 y'0 dt=0. (58, 59)

From equation (58) or (59) the amplitude A0 is obtained. This fact gives a constraint to
the method: it is applicable only for the case when the motion has a limit cycle. Otherwise,
the amplitude A0 is zero, and the method is without meaning.
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Integrating equations (51) and (52) yields

g
t

0 $1f1

1x
x1 x'0 +

1f1

1x'
x'0 (x'1 z2V0 + x'0 V1)+

1f1

1y
x'0 y1 +

1f1

1y'
x'0 (y'1 z2V0 + y'0 V*1 )% dt

=[V0 V2 (z2+1)+ (V2
1/2)]x'20 =t0 +V0 V1 (2z2+1)x'0 x'1 =t0 +2V2

0x'0 x'2 =t0
+ c3 [x3

0x2 + 3
2 x2

0x2
1 −3(1

2 x2
0y2

1 + x2
0y0 y2 +2x0 x1 y0 y1 + x0 x2 y2

0)], (60)

g
t

0 $1f2

1x
x1 y'0 +

1f2

1x'
y'0 (x'1 z2V0 + x'0 V1)+

1f2

1y
y'0 y1 +

1f2

1y'
y'0 (y'1 z2V0 + y'0 V*1 )% dt

=[V0 V*2 (z2+1)+V2
1/2]y'20 =t0 +V0 V*1 (2z2+1)y'0 y'1 =t0 +2V2

0y'0 y'2 =t0
− c3 [ y3

0y2 + 3
2 y2

0y2
1 −3(1

2 y2
0x2

1 + x2
0y0 y2 +2x0 x1 y0 y1 + x0 x2 y2

0)]. (61)

Integrating equations (60) and (61) over the time period 4K yields

g
4K

0 $1f1

1x
x1 x'0 +

1f1

1x'
x'0 (x'1 z2V0 + x'0 V1)+

1f1

1y
x'0 y1 +

1f1

1y'
x'0 (y'1 z2V0 + y'0 V*1 )% dt=0,

(62)

g
4K

0 $1f2

1x
x1 y'0 +

1f2

1x'
y'0 (x'1 z2V0 + x'0 V1)+

1f2

1y
y'0 y1 +

1f2

1y'
y'0 (y'1 z2V0 + y'0 V*1 )% dt=0.

(63)

Separating the variables V1, V*1 , A1, A*1 from equations (56), (57), (62) and (63) yields

V1 =W0 +A1 W1 (t)+A*1 W2 (t), (64)

V*1 =W*0 +A1 W*1 (t)+A*1 W*2 (t), (65)

A*1 =
N0 M1 −N1 M0

M*1 N1 −M1 N*1
, A1 =

N0 M*1 −M0 N*1
M1 N*1 −N1 M*1

, (66, 67)

where

M1 =g
4K

0 61f1

1x'
x'20 $z2V0

A0
+W1 (t)%+

1f1

1x
1
A0

x0 x'0 +
1f1

1y'
x'0 y'0 W*1 (t)7 dt, (68)

M*1 =g
4K

0 61f1

1x'
x'20 W2 (t)+

1f1

1y
1
A0

y0 x'0 +
1f1

1y'
x'0 y'0 $W*2 (t)+

V0 z2
A0 %7 dt, (69)

N1 =g
4K

0 61f2

1x'
x'0 y'0 $z2V0

A0
+W1 (t)%+

1f2

1x
1
A0

x0 y'0 +
1f2

1y'
y'20 W*1 (t)7 dt, (70)

N*1 =g
4K

0 61f2

1x'
x'0 y'0 W2 (t)+

1f2

1y
1
A0

y0 y'0 +
1f2

1y'
y'20 $W*2 (t)+

V0 z2
A0 %7 dt, (71)

M0 =g
4K

0

1f1

1x'
x'20 W0 (t) dt+g

4K

0

1f1

1y'
x'0 y'0 W*0 (t) dt, (72)
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N0 =g
4K

0

1f2

1x'
x'0 y'0 W0 (t) dt+g

4K

0

1f2

1y'
y'20 W*0 (t) dt, (73)

W1 (t)=−
2V0

A0 (1+z2)
−

c3 (x3
0 +3x0 y2

0)

x'20 (1+z2)V0 A0

, W2 (t)=
3c3 x2

0y0

A0 x'20 (1+z2)V0

, (74, 75)

W0 (t)=
ft
0 f1 x'0 dt

x'20 (1+z2)V0

, W*1 (t)=−
3c3 x0 y2

0

A0 V0 y'20 (1+z2)
, (76, 77)

W*2 (t)=
2V0

A0 (1+z2)
−

c3 (y3
0 +3y0 x2

0)

y'20 (1+z2)V0 A0

, W*0 (t)=
ft
0 f2 y'0 dt

y'20 (1+z2)V0

.(78, 79)

The solution of equation (2) in the first approximation is

z=(A0 + oA1) dn (t, 1/2)+ i(A0 /z2)+ oA*1 ) sn (t, 1/2), (80)

ż=−1
2 (A0 + oA1) (V0 z2+ oV1) sn (t, 1/2) cn (t, 1/2)

+ i(A0 /z2)+ oA*1 ) (V0 z2+ oV*1 ) cn (t, 1/2) dn (t,1/2). (81)

6. EXAMPLES

6.1.  1
Consider the motion of the rotor centre described by the equation

z̈+ c3 z3 = o(1− zz̄)ż, (82)

where z̄ is the complex conjugate function. Applying the method of harmonic balance and
substituting the solution (20) into equation (82) yields

−AV2z2(cn2 + iz2 sn dn)+A3c3 (dn2 + iz2 dn sn− 1
2 sn2)

= o(1−A2)AiV cn. (83)

Separating the real and imaginary parts, one has

V=As zc3 and A2
s =1. (84, 85)

Applying the method of time variable amplitude and phase (see section 4) transforms the
differential equation (82) into two first order differential equations:

A� (t)= (o/2) (1−A2)A, f� (t)=0. (86, 87)

For the initial conditions t=0, A(0)=A0, f(0)=f0, the solution for transient motion
described by equations (86) and (87) is

f=f0,
1−A
1−A0

1+A0

1+A
A2

0

A2 = e−et. (88)

In Figure 1 the amplitude–time diagrams for various initial conditions are plotted. The
steady state solution is As =1 and is the same as obtained by the harmonic balance method
(see relation (85)).

Upon applying the elliptic perturbation method it is evident that the conditions (58) and
(59) are satisfied only for A0 =1. For this value of the amplitude, the values of V1, V*1 ,
A1, A*1 are zero.

In Figure 2 the motion of the rotor centre described by equations (82) is plotted. The
initial conditions are A(0)=A0 =1, f(0)=f0 =0, and the parameter of the system is
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Figure 1. Amplitude–time diagrams for various initial conditions.

c3 =1. In Figure 2(a) the xA − yA and in Figure 2(b) the xN − yN diagrams obtained
analytically and numerically (by applying the Runge–Kutta procedure), respectively, are
plotted. The trajectory of motion in the x–y plane is an arc. It can be concluded that the
analytically obtained solution lies on top of the numerical solution.

6.2.  2
Consider the case when the differential equation of motion is

z̈+ c3 z3 = o(1− zz̄)z, (89)

where

f1 = (1− x2
0 − y2

0)x0, f2 = (1− x2
0 − y2

0)y0. (90, 91)

To obtain the solution the elliptic perturbation method is assumed. Substituting the
solution (55) into equations (58) and (59) yields

(1−A2
0)A2

0 g
4K

0

sn cn dn dt=0. (92)

From equation (92) it can be concluded that for A0 =1 the trajectory of motion is a limit
cycle. For the small non-linear terms (90) and (91) the coefficients M0 and N0 are zero, and

A1 =0, A*1 =0. (93)

Then

V1 =W0, V*1 =W*0 , (94)

where

W0 (t)=−
(1−A2

0)

(1+z2)V0 (2 dn2 −1)
,

W*0 =−
1−A2

0

4 dn2 (1+z2)V0

.
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Figure 2. x–y diagrams obtained (a) analytically, (b) numerically.

For A0 =1 the solution of equation (89) is

z=A0 dn (A0 z2c3t, 1/2)+ (A0 i/z2) sn (A0 z2c3 t(1/2)). (95)

Applying the Krylov–Bogoliubov method transforms equation (89) into a system of two
first order differential equations:

A2(t)f� (t)zc3 cn2 =−o[1−A2(t)]A(t)z2, A� (t)=0. (96, 97)

After averaging of the elliptic function over the period 4K one obtains

A(t)f� (t)=−
oz2[1−A2(t)]
4(2E−K)zc3

, A� (t)=0.
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Integrating the equations for the initial conditions A(0)=A0 and f(0)=f0 yields

f(t)=f0 −
oz2(1−A2

0)
4(2E−K)A0 zc3

t,

and the solution is

z(t)=A0 $dn 0z2c3 A0 t−
oz2(1−A2

0)t
4(2E−K)A0 zc3

+f0, 1
2 1

+
i

z2
sn 0z2c3 A0 t−

oz2(1−A2
0)t

4(2E−K)A0 zc3

+f0, 1
2 1%. (98)

For the initial conditions A(0)=A0 =1 and f(0)=f0 =0, the solution is the same as that
obtained by elliptic perturbation (95). For the aforementioned initial conditions and
parameter value c3 =1, the x–t and y–t diagrams obtained by analytical and numerical
solving of (89) are plotted in Figure 3. The solutions show good agreement.

6.3.  3
Consider the case when the differential equation of motion is

z̈+ z3 =−(o/4)z� [(z2 + ż2)− (z̄2 + z� 2)]; (99)

i.e.,

ẍ+(x3 −3xy2)= of1, ÿ+(3x2y− y3)= of2,

where

f1 =−ẏ(xy+ ẋẏ), f2 =−ẋ(xy+ ẋẏ). (100)

By applying the suggested elliptic perturbation procedure the limit cycle motion is
obtained. Substituting equations (100) into equation (58) or (59) yields

g
4K

0

(sn2 cn2 dn2 −2A2
0 sn2 cn4 dn2) dt=0, (101)

Figure 3. x–t and y–t diagrams obtained analytically and numerically.
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where

sn0 sn (t, 1/2), cn0 cn (t, 1/2), dn0 dn (t, 1/2).

Calculating the relation (101) gives

A0 =0·8544.

The correction values are

W0 =

−0·44333t+0·60857E(t)+0·53476 sn cn dn−0·41714 sn3 cn dn+0·20857 sn5 cn dn]
1·5031 sn2 cn2

W*0 =

−0·44333t+0·60857E(t)+0·53476 sn cn dn−0·41714 sn3 cn dn+0·20857 sn5 cn dn]
0·7515 dn2 cn2 ,

Figure 4. x–y diagrams obtained (a) numerically, (b) analytically.
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W1 =−0·82988−0·35452 dn2 dn+2·1213 sn
sn2 cn2 , W*1 =−1·4569

sn2

cn2 dn
,

W2 =1·0302
dn2

sn cn2, W*2 =0·82988−sn
4 sn2 +3 dn2

1·7041 cn2 dn2

and the solution in the first approximation is

z=0·90130 dn 01·2083t+0·1 g
t

0

V1 dt1+0·58415 sn 01·2083t+ o g
t

0

V*1 dt1, (102)

where

V1 =W0 +A1 W1 +A*1 W2, V*1 =W*0 +A1 W*1 +A*1 W*2 .

The solution of equation (99) is obtained numerically by applying the Runge–Kutta
procedure. The parameter of the system is o=0·1. The initial conditions are
A(0)=A0 =0·8544 and f(0)=f0 =0. The analytically obtained solution (102) is
compared with the numerical one. In Figure 4 the x–y diagrams are plotted. The analytical
solution represents the averaged value of the ‘‘exact’’ numerical solution.

7. CONCLUSION

In this paper approximate analytical methods for solving non-linear differential
equations with a strong cubic complex term have been presented. The harmonic balance
method, the method of Krylov and Bogoliubov and the elliptic perturbation method have
been extended for equations in complex function. The solution is based on the generating
solution of a strongly non-linear differential equation with a cubic complex term. The
solution is described with Jacobi elliptic functions. The method of elliptic perturbation is
applicable for the case when the motion has a limit cycle. The solution obtained by the
method presented in this paper is a particular solution which describes the limit cycle
motion. After applying the methods for solving differential equations which describe the
vibrations of the rotor it can be concluded that the suggested methods give solutions which
are in good agreement with those obtained numerically, even for high values of
non-linearity.
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